
Sabato 24 settembre 2022 Alberto AcerbisSabato 24 settembre 2022

•Minimal API & Blazor mixed 
by Azure ServiceBus



Grazie ai nostri sponsor



Perchè DDD?

• La tecnologia è destinata a diventare, 
inevitabilmente, obsoleta!

• La comprensione del Dominio diventa il 
punto centrale nello sviluppo software

• I Domain Expert sono la nostra risorsa 
principale

• Non parlano il nostro linguaggio

• Ci serve un Linguaggio Comune

• NON si parte dal database!



Shared Model

Scott Wlaschin: Domain 
Modelling made 
Functional



Cosa Propone DDD?

https://www.infoq.com/articles/ddd
-contextmapping/

Bounded Context

https://martinfowler.com/bliki/BoundedContex
t.html

Ubiquitous 
Language

https://blog.carbonfive.com/u
biquitous-language-the-joy-
of-naming/

Context Mapping

https://www.infoq.com/articles/ddd-contextmapping/
https://www.infoq.com/articles/ddd-contextmapping/
https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/BoundedContext.html
https://blog.carbonfive.com/ubiquitous-language-the-joy-of-naming/
https://blog.carbonfive.com/ubiquitous-language-the-joy-of-naming/
https://blog.carbonfive.com/ubiquitous-language-the-joy-of-naming/


Come Risolve il Problema DDD? 

Feature Bounded Context Microservices Microfrontends

Organized around Business 
Capabilities

It is implicitly understood 
in the very concept of 
Ubiquitous Language, which 
is the main pattern for 
identifying a Bounded 
Context

Cross-Functional Teams 
specific to a business 
functionality

Each SCS is owned by One 
Team

Decentralized Governance A shared model for each 
purpose

Local choices, which must be 
independent, are 
favored/encouraged.

Autonomous WebApp

Decentralized Data 
Management

Private persistence is 
critical for language 
consistency, but especially 
necessary for the safe and 
independent evolution of the 
model

Each microservice must 
persist its data in a 
private database! Otherwise, 
it will be unable to evolve 
independently from others

Each SCS has its own API 
Include Data and Logic

Evolutionary Design Each model can, and must, 
evolve independent of the 
others

Key feature No Shared UI
No Shared Business Code
Shared infrastructure can be 
minimized

Smart endpoints and dumb 
pipes

Recommended as a strategic 
model

Key feature. SOA docet! Asynchronous Communication

Language Consistency Ubiquitous Language Key feature Private Logica and Data



Minimal API & Microservices

• No supporto nativo per content 
negotiation. Solo JSON

• No supporto nativo per il versioning
• No supporto nativo per la validazione

• Ma noi abbiamo FluentValidation
• No forzature sulla struttura del progetto

• E questo ci piace molto!





Reactive Manifesto
1. Jones Boner, Dave Farley, Roland Kuhn, Martin Thompson – 16.01.2014
2. The absolute, most important thing is it to be responsive.

This means that a reactive system needs to remain responsive event when a failure 
occurs.



Eventual Consistency





Microfrontend

ThoughtWorks Technology 
Radar 2016

Self-Contained Systems

- Autonomous Web Application
- Each SCS is owned by One Team
- Asynchronous Communication
- Each SCS has its own API
- Each SCS include Data and Logic
- No Shared UI
- No Shared Business Code
- Shared Infrastructure can be minimized



Cosa sono i Microfrontend?

Microfrontends are the technical 
representation of a business subdomain, 
they allow independent implementations with 
the same, or different, technology choices.

Finally they should avoid sharing logic 
with other subdomains and they are own by a 
sigle team.



Microfrontend in Pratica

- Micro-apps with a shared session and 
parameters

- Routing
- Blazor as a component in an existing 
project

- Shared components or a Razor class library





Grazie ai nostri sponsor



Sabato 24 settembre 2022

alberto.acerbis@intre.it

https://github.com/brewup

https://github.com/cqrs-muflone

mailto:alberto.acerbis@intre.it
https://github.com/brewup
https://github.com/cqrs-muflone
https://leanpub.com/cronache-di-domain-driven-design
https://albertoacerbis.com/

	Default Section
	Slide 1: DDD in salsa Cloud
	Slide 2: Grazie ai nostri sponsor
	Slide 3: Perchè DDD?
	Slide 4: Shared Model
	Slide 5: Cosa Propone DDD?
	Slide 6: Come Risolve il Problema DDD? 
	Slide 7: Minimal API & Microservices
	Slide 8: Talk is Cheap … Show me the code
	Slide 9: Reactive Manifesto
	Slide 10: Eventual Consistency
	Slide 11: Talk is Cheap … Show me the code
	Slide 12: Microfrontend
	Slide 13: Cosa sono i Microfrontend?
	Slide 14: Microfrontend in Pratica
	Slide 15: Talk is Cheap … Show me the code
	Slide 16: Grazie ai nostri sponsor

	Untitled Section
	Slide 17: Thanks!


