
SmallTalk - WebAssembly

WebAssembly – UGIdotnet SmallTalk 05/10/2022

alberto.acerbis@intre.it

mailto:alberto.acerbis@intre.it
https://albertoacerbis.com/

WebAssembly

WebAssembly (abbreviated Wasm) is a binary instruction

format for a stack-based virtual machine. Wasm is

designed as a portable compilation target for

programming languages, enabling deployment on the web

for client and server applications.

A bit of history …
- Sir Tim Berners-Lee: he recognized the need for a technical solution to

solve the problem of sharing documents between different operating

system or platforms

- JavaScript: Brendan Eich, hired by Netscape to create a Scheme for the

browser.

- With NaCl we found a solution that provided sandboxing and performance.

- With PNaCl we found solution platform portability and sandboxing, but not

browser portability

- With asm.js we found browser portability and sandboxing, but not

performance

- WebAssembly (2015): Brendan Eich

WebAssembly – UGIdotnet SmallTalk 05/10/2022

What we need?

• JavaScript is not enough!

• Portability of high-level languages (C/C++/Rust … all)

• We need something to provide software that is

• Safe

• Fast

• Portable

• Compact

• We need portability at both the code and application levels

• WebAssembly is a target platform with a series of instructions that are
vaguely assemblyesque

WebAssembly – UGIdotnet SmallTalk 05/10/2022

Interpreted vs Compiled

WebAssembly – UGIdotnet SmallTalk 05/10/2022

WebAssembly Text Format

A text format that describes the behavior of a module

that is easier for humans to read (.wat)

(module

(func $how_old (param $year_now(i32) (param $year_born i32) (result i32)

get_local $year_now

get_local $year_born

i32.sub)

(export "how_old" (func $how_old)

)

)

WebAssembly – UGIdotnet SmallTalk 05/10/2022

WebAssembly – UGIdotnet SmallTalk 05/10/2022

WebAssembly Structure
Id Name Description

0 Custom Debugging or metadata information for third-party uses

1 Type Type definitions used in the modules

2 Import Imported elements used by a module

3 Function Type signatures associated with the functions in a module

4 Table Tables that define indirect, immutable reference used by a module

5 Memory Linear memory structures used by a module

6 Global Global variables

7 Export Exported elements provided by a module

8 Start An optional start function to initiate a module

9 Element Elements defined by a module

10 Code The body of the functions defined by a module

11 Data The data elements defined by a module

12 Data Count The number of data elements defined by a module

WebAssembly – UGIdotnet SmallTalk 05/10/2022

WASI (WebAssembly System Interface)

• Cross platform applications and games

• Code re-use between platforms and use cases
• Video-editing, ML, Virtual Reality, Games

• Running applications written in any Wasm/Wasi
compilable language on a single runtime

• Containerizing applications and their dependencies
• This would not be a replacement for containerization, but could be a better option for

applications

WebAssembly – UGIdotnet SmallTalk 05/10/2022

WASI Goals

• WASI enables wasm module to run well
outside of the browser

• Proposals
• I/O
• Filesystem
• Clocks
• Machine Learning (wasi-nn)

WebAssembly – UGIdotnet SmallTalk 05/10/2022

WAGI

• Without networking in WebAssembly we had no way
to write services that could load WebAssembly
modules to handle http requests.

• WAGI and CGI
• WAGI abides the CGI 1.1 spec (RFC 3875). It defines a few extra environment

variables unique to Wagi, but compatible with the specification.

• Wagi maps an HTTP path to a Wasm module (es. http://smalltalk.com/foo/bar
to the Wasm module helloSmallTalk.wasm. When /foo/bar is requested, Wagi
loads module and executes it just CGI executes its apps.

WebAssembly – UGIdotnet SmallTalk 05/10/2022

fn main() {
 println("content-type: text/plain");
 println("");
 println("Hello World");
}

http://smalltalk.com/foo/bar%20to%20wasm%20module%20helloSmallTalk.wasm

WebAssembly and .NET

• WebAssembly is a binary exectable format

• C# compiles one binary exceutable formatm .NET bytecode

• Changing it to target another is trickly

• C# is deeply entwined with .NET standard library

• C# gets a lot less interesting without NuGet packages

• .NET has taken a different approach to Wasm

• The strategy is to compile the .NET runtime to Wasm bytecode

• Just as Python …

• SteveSandersonMS/dotnet-wasi-sdk:

WebAssembly – UGIdotnet SmallTalk 05/10/2022

https://github.com/SteveSandersonMS/dotnet-wasi-sdk

WebAssembly will replace Docker?

WebAssembly – UGIdotnet SmallTalk 05/10/2022

• Wasm is like a container, but with
abstraction at a higher level

• Wasm is platform agnostic
• Was runs in an isolated sandbox
• It will be possible to build Wasm-

based components

• We can create containers for
Windows or for Linux, but not
'universal' containers

WebAssembly and Docker

WebAssembly – UGIdotnet SmallTalk 05/10/2022

Docker and WebAssembly work well together

• Containers and WebAssembly are
fast friends, not mortal enemies

https://www.docker.com/blog/why-containers-and-webassembly-work-well-together/

Thanks

WebAssembly – UGIdotnet SmallTalk 05/10/2022

alberto.acerbis@intre.it

https://webassembly-
studio.kamenokosoft.com/?f=5z61oxzmbch

mailto:alberto.acerbis@intre.it
https://albertoacerbis.com/
https://webassembly-studio.kamenokosoft.com/?f=5z61oxzmbch
https://webassembly-studio.kamenokosoft.com/?f=5z61oxzmbch

	Slide 1: SmallTalk - WebAssembly
	Slide 2: WebAssembly
	Slide 3: A bit of history …
	Slide 4: What we need?
	Slide 5: Interpreted vs Compiled
	Slide 6: WebAssembly Text Format
	Slide 7
	Slide 8: WebAssembly Structure
	Slide 9: WASI (WebAssembly System Interface)
	Slide 10: WASI Goals
	Slide 11: WAGI
	Slide 12: WebAssembly and .NET
	Slide 13: WebAssembly will replace Docker?
	Slide 14: WebAssembly and Docker
	Slide 15: Thanks

