
https://github.com/BrewUp/DDD-Europe-2025

Advanced Refactor Using DDD



Not THE solution, but A solution

Disclaimer

We're sharing what worked 

for us, not a universal 

approach

Our Context

Solutions adapt to team size, 

tech stack, and business 

domain

Your Mileage

Take principles, adapt implementation to your needs



What define a legacy system?
Are you sure it is not just old?



Redefining "Legacy"

Not Just Age

A 20-year system can be healthy

A 2-year system can be legacy

It's About Health

Measures adaptability, not birthdate

Reflects organizational knowledge

Key Indicators

Fear of changes

Unknown dependencies

Tribal knowledge



Why do we touch it anyway?
Because duct tape and prayers stopped working



Why do we touch it anyway?
It’s business-critical
Because if it goes down, so does half the company...

It’s blocking change
Because trying to build around it feels like coding in a minefield

It’s too risky to ignore
It’s not a ticking time bomb — it’s already ticking and smoking

It’s costly to maintain
Because Karen from finance won’t stop emailing us

It holds valuable data or logic
Because it knows things... ancient, forbidden things no one documented

Modernization effort
We called it “phase one” in 2019. We still do…

New features
Because the shiny new microservice can’t do anything without this dinosaur.



Legacy is not when it is old,
but when no one dares to 

change it anymore.



Awful monolith
Show me the code



Exercise
What is wrong with branch-01?



“Developers are drawn to 
complexity, like moths to 

a flame, often with the 
same outcome”

Neal Ford



Big ball of mud
Lack of a clear architecture, leading to a 
system that is haphazardly structured and 
difficult to understand or modify.



Lack of modularity
Failure to properly encapsulate different 
functionalities, leading to a system where 
changes in one module ripple through 
others.



Shared data model
Different modules or 
functionalities directly accessing 
and modifying a shared data 
model, leading to high risk of data 
corruption and conflicts.



Monolithic database 
design
A single database for all application needs, 
creating a bottleneck and complicating any 
attempt to scale or separate concerns.



What is the impact of changes?

Neal Ford, Mark Richards, Pramod Sadalage, and Zhamak Dehghani



Exercise
Let’s start refactoring (branch-02)



Other things we can do?

• A DB for every module: Autonomy vs Consistency

• Mediator pattern: Decoupling vs Verbosity



Disclaimer

Every solution has a price. 
Don't pair up with the first 
CQRS that comes along.



What is the impact of changes?

Neal Ford, Mark Richards, Pramod Sadalage, and Zhamak Dehghani



Exercise
How do you protect yourself?



Testing strategy: E2E

• Validate external behavior

• Same payloads, same outcomes



Testing Strategy: Fitness Functions

• Assert architectural rules

• Protect module boundaries

“Any mechanism that performs an objective integrity 
assessment of some architecture characteristics or 
combination of architecture characteristics.”
Building Evolutionary Architectures



Testing Strategy: Unit Tests

• Pyramid structure

• Fast feedback for domain logic



Need More Scalability?
How do you achieve that 
without microservices?



Exercise
Let’s add events! (branch-03)



CQRS+ES



Given, When, Then

• The essential idea is to divide a scenario 
into three sections: 

• Given: describes the state of the 
aggregate before sending the command. 
A kind of prerequisite of the test.

• When: represents the command to be 
sent to the aggregate.

• Then/Expect: describes the state changes 
expected as a result of the command.



“Software architecture it's abstract 
by nature and we must ground it 
with some implementation details 
to make it concrete”



Bibliography
• Implementing Domain-Driven Design

• The Software Architect Elevator

• Learning Domain-Driven Design: Aligning 
Software Architecture and Business Strategy

• Hands-On Domain-Driven Design with .NET Core

• Software Architecture: The Hard Parts



This workshop was based on the 
concepts explained in our recently 
released book

Use DDD20 for a 20% discount 
during the conference days



Thank you!
We hope you learned something while having fun

linkedin.com/in/aacerbis/
alberto.acerbis@intre.it

linkedin.com/in/alessandrocolla
alessandro.colla@evoluzione.agency


	Start
	Slide 1: Advanced Refactor Using DDD
	Slide 2
	Slide 3: What define a legacy system?
	Slide 4
	Slide 5: Why do we touch it anyway?
	Slide 6: Why do we touch it anyway?
	Slide 7: Legacy is not when it is old, but when no one dares to change it anymore.

	Branch 01
	Slide 8: Awful monolith
	Slide 9: Exercise
	Slide 10: “Developers are drawn to complexity, like moths to a flame, often with the same outcome” Neal Ford
	Slide 11: Big ball of mud
	Slide 12: Lack of modularity
	Slide 13: Shared data model
	Slide 14: Monolithic database design
	Slide 15: What is the impact of changes?

	Branch 02
	Slide 16: Exercise
	Slide 17: Other things we can do?
	Slide 18: Disclaimer
	Slide 19: What is the impact of changes?

	Safety net with tests
	Slide 20: Exercise
	Slide 21: Testing strategy: E2E
	Slide 22: Testing Strategy: Fitness Functions
	Slide 23: Testing Strategy: Unit Tests

	Branch-03
	Slide 24: Need More Scalability? How do you achieve that without microservices?
	Slide 25: Exercise
	Slide 26: CQRS+ES
	Slide 27: Given, When, Then

	Chiusura
	Slide 28: “Software architecture it's abstract by nature and we must ground it with some implementation details to make it concrete”
	Slide 29: Bibliography
	Slide 30
	Slide 31: Thank you! We hope you learned something while having fun


