KAND) INSKY

All events are testable!

Alberto Acerbis - Alessandro Colla

Repository

ithub.co

//8
DDinsky 2025

https

User interface

Query

A\ 4

Query handler

Command bus

\ 4

Command handler

CQRS + ES : —
fast recap | L

\ 4

Event handler

\ 4

Repository

Event bus

Event store

Domain-Driven Refactoring — chapter 7

What is BrewUp

* A demo ERP to handle a brewery's
processes

* We purchase beers from neighboor
breweries

 \We make our own line of beers

* As you can imagine there is a lot to do (and
drink!) in this domain

Scenario for today

 We must handle a customer order made of
beers that we do not make

 \We must check availabilities in our
warehouse

* In case, create an order to the external
supplier

« Handle the receiving of the ordered beers
* Ship the order to the customer

MANAGEMENT

Purchase Beers
_——» order _____—— Received Load
> i Received s \\\\ﬂ Beerin __
- Stock N
Create \ Beer
» Purchase _ purch
A s oo \-. Beers Ioaded
heck and > ChangedTo in stock
I;?.::.: ///7"’7,7 Complete
b racavad \ iz
\o Order - Purchase External
\, order s fig ifer
created HRp
A
\ \
\
\ Acknowledge \
= Receiving 8)
———— Order From <— <«
Supplier
/
/
[[
‘ '
Prepare Order
_—"" Order prepared
/ |
/ |
/ /
/
/
/
/
//
,//
Ship o
- Shipping

P
ey — 1 Order Saga B
— lorder

A=
#
Order 7

x
—— shipped <

https://miro.com/app/board/uXjVMTI642Y=/

Let’s look at the code

How we test it?

* Only with unit tests?

* Would we not limit ourselves to the single
function, properties or simple state
testing?

* Are these sufficient to represent the
complexities of the domain?

e Isn't it better to test the behaviour?

Once upon a time...there was an attempt...

[Test]
public void HandleChangeUserPassword()
{
var handler = GetHandler();
var dateRef = DateTime.Now;
var command = new ChangeUserPassword(guid, "newpwd", dateRef);
handler.Handle(command);
Assert.AreEqual(guid, user.Id);
Assert.AreEqual("newpwd”, user.Password);
Assert.AreEqual(dateRef, user.LastPasswordChangedDate);

repository.Verify(x => x.Save(user, It.IsAny<Guid>(), It.IsAny<Action<IDictionary<string, object>>>()), Times.Once());

[Test]
public void HandleLockUser()
{
var handler = GetHandler();
var dateRef = DateTime.Now;
var command = new LockUser(guid, dateRef);
handler.Handle (command);
Assert.AreEqual(guid, user.Id);
Assert.AreEqual(dateRef, user.LastlLockedOutDate);

Assert.IsTrue(user.IsLockedOut);
repository.Verify(x => x.Save(user, It.IsAny<Guid>(), It.IsAny<Action<IDictionary<string, object>>>()), Times.Once());

https://github.com/Iridio/CQRS-ES_MembershipProvider

Let’s try with specification
testing

* Tests should be able to represent any
complex behaviour with simplicity

* They must be comprehensible to everyone =

* They represent the thinking behind the
deS|gn of the aggregate

* "Given, When, Then” with events, commands
and command handlers

Given, When, Then

* The idea is to separate a scenario into three
sections:

 Given: describes the state of the aggregate
before sending the command.
A kind of prerequisite for the test.

* When: represents the command to be sent
to the aggregate.

» Then/Expect: describes the state changes
expected as a result of the command.

Let’s do the first test together

Exercises

Write tests and events to handle:
e CreatePurchaseOrder -> PurchaseOrderCreated

* UpdatePurchaseOrderState ->
PurchaseOrderReceived

e PurchaseOrderReceived -> BeersReceived
e LoadBeerlnStock -> BeerLoadedInStock

10 minutes

Exercises

Write tests and events to handle:
e CreatePurchaseOrder -> PurchaseOrderCreated

» SendPurchaseOrderToSupplier->
PurchaseOrderSentToSupplier

 ReceivePurchaseOrderFromSupplier ->
PurchaseOrderStatusChangedToComplete

e LoadBeerlnStock -> BeerLoadedInStock

MANAGEMENT

Purchase Beers
_——» order _____—— Received Load
> i Received s \\\\ﬂ Beerin __
- Stock N
Create \ Beer
» Purchase _ purch
A s oo \-. Beers Ioaded
heck and > ChangedTo in stock
I;?.::.: ///7"’7,7 Complete
b racavad \ iz
\o Order - Purchase External
\, order s fig ifer
created HRp
A
\ \
\
\ Acknowledge \
= Receiving 8)
———— Order From <— <«
Supplier
/
/
[[
‘ '
Prepare Order
_—"" Order prepared
/ |
/ |
/ /
/
/
/
/
//
,//
Ship o
- Shipping

P
ey — 1 Order Saga B
— lorder

A=
#
Order 7

x
—— shipped <

https://miro.com/app/board/uXjVMTI642Y=/

Scenario

Order svc

Payment svc

Warehouse svc

ExecutePayment

CompleteOrder

Ll

Shipping svc

PrepareQOrder

ShipOrder

Orchestration (Command)

Order Created

Order svc

Create order
saga

~

Message broker

Execute Payment

f Paymentsvc

Order Payment
Executed

Prepare Order

Order Saga

Saga

> Ship order \
Shipping svc

» Warehouse svc

Order Prepared

Order shipped

channel

What if there is no product in stock?

Order Created

Order svc

Create order
saga

~

Message broker

Execute Payment

f Paymentsvc

Order Payment
Executed

Prepare Order

Order Saga

Refund customer

Saga
channel

» Warehouse svc

I[tem Out of stock

Recap

Bibliograty

* Domain-Driven Design: Tackling Complexity in the Heart of
Software (E. Evans)

https://www.amazon.it/Domain-Driven-Design-Tackling-Complexity-Software-ebook/dp/B00794TAUG

* Implementing Domain-Driven Design (V. Vernon)

https://www.amazon.it/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/BOOBCLEBNS/

* REST in Practice: Hypermedia and Systems Architecture
(J.Webber)

https://www.amazon.it/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829

* Enterprise Integration Patterns (G. Hohpe)

https://www.amazon.it/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683/

* Hands-On Domain-Driven Design with .NET Core (A. Zimarev)

https://www.amazon.it/Hands-Domain-Driven-Design-NET/dp/1788834097

https://www.amazon.it/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://www.amazon.it/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://www.amazon.it/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://www.amazon.it/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://www.amazon.it/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://www.amazon.it/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://www.amazon.it/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://www.amazon.it/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://www.amazon.it/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829

This workshop was based on some concepts
explained in our recently released book

Use DDD20 for a 20% discount during the
conference days

Refactoring

THANKS!

You can find us at:

M alessandrocolla _
X alessandro.colla@evoluzione.agency

@aacerbis . . @
M@ https://www.linkedin.com/in/aacerbis/
X alberto.acerbis@intre.it

@collaalessandro X

Ak

	Diapositiva 1
	Diapositiva 2: Repository
	Diapositiva 3: Schedule
	Diapositiva 4: CQRS + ES fast recap
	Diapositiva 5: What is BrewUp
	Diapositiva 6: Scenario for today
	Diapositiva 7
	Diapositiva 8: Let’s look at the code
	Diapositiva 9: How we test it?
	Diapositiva 10: Once upon a time…there was an attempt…
	Diapositiva 11: Let’s try with specification testing
	Diapositiva 12: Given, When, Then
	Diapositiva 13: Questions?
	Diapositiva 14: Let’s do the first test together
	Diapositiva 15: Exercises
	Diapositiva 16
	Diapositiva 17: Exercises
	Diapositiva 18
	Diapositiva 19: Scenario
	Diapositiva 20: Choreography (Events) Orchestration (Command)
	Diapositiva 21
	Diapositiva 22: What if there is no product in stock?
	Diapositiva 23
	Diapositiva 24: Recap
	Diapositiva 25: Bibliografy
	Diapositiva 26
	Diapositiva 27: THANKS!

