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What is BrewUp

* A demo ERP to handle a brewery's
processes

* We purchase beers from neighboor
breweries

 \We make our own line of beers

* As you can imagine there is a lot to do (and
drink!) in this domain




Scenario for today

 We must handle a customer order made of
beers that we do not make

 \We must check availabilities in our
warehouse

* In case, create an order to the external
supplier

« Handle the receiving of the ordered beers
* Ship the order to the customer
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Let’s look at the code



How we test it?

* Only with unit tests?

* Would we not limit ourselves to the single
function, properties or simple state
testing?

* Are these sufficient to represent the
complexities of the domain?

e Isn't it better to test the behaviour?




Once upon a time...there was an attempt...

[Test]
public void HandleChangeUserPassword()
{
var handler = GetHandler();
var dateRef = DateTime.Now;
var command = new ChangeUserPassword(guid, "newpwd", dateRef);
handler.Handle(command);
Assert.AreEqual(guid, user.Id);
Assert.AreEqual("newpwd”, user.Password);
Assert.AreEqual(dateRef, user.LastPasswordChangedDate);

repository.Verify(x => x.Save(user, It.IsAny<Guid>(), It.IsAny<Action<IDictionary<string, object>>>()), Times.Once());

[Test]
public void HandleLockUser()
{
var handler = GetHandler();
var dateRef = DateTime.Now;
var command = new LockUser(guid, dateRef);
handler.Handle (command);
Assert.AreEqual(guid, user.Id);
Assert.AreEqual(dateRef, user.LastlLockedOutDate);

Assert.IsTrue(user.IsLockedOut);
repository.Verify(x => x.Save(user, It.IsAny<Guid>(), It.IsAny<Action<IDictionary<string, object>>>()), Times.Once());

https://github.com/Iridio/CQRS-ES_MembershipProvider



Let’s try with specification
testing

* Tests should be able to represent any
complex behaviour with simplicity

* They must be comprehensible to everyone =

* They represent the thinking behind the
deS|gn of the aggregate

* "Given, When, Then” with events, commands
and command handlers



Given, When, Then

* The idea is to separate a scenario into three
sections:

 Given: describes the state of the aggregate
before sending the command.
A kind of prerequisite for the test.

* When: represents the command to be sent
to the aggregate.

» Then/Expect: describes the state changes
expected as a result of the command.







Let’s do the first test together



Exercises

Write tests and events to handle:
e CreatePurchaseOrder -> PurchaseOrderCreated

* UpdatePurchaseOrderState ->
PurchaseOrderReceived

e PurchaseOrderReceived -> BeersReceived
e LoadBeerlnStock -> BeerLoadedInStock




10 minutes




Exercises

Write tests and events to handle:
e CreatePurchaseOrder -> PurchaseOrderCreated

» SendPurchaseOrderToSupplier->
PurchaseOrderSentToSupplier

 ReceivePurchaseOrderFromSupplier ->
PurchaseOrderStatusChangedToComplete

e LoadBeerlnStock -> BeerLoadedInStock
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Scenario
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Orchestration (Command)
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What if there is no product in stock?
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Recap
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This workshop was based on some concepts
explained in our recently released book

Use DDD20 for a 20% discount during the
conference days

Refactoring




THANKS!

You can find us at:

M alessandrocolla _
X alessandro.colla@evoluzione.agency

@aacerbis . . @
M@ https://www.linkedin.com/in/aacerbis/
X alberto.acerbis@intre.it

@collaalessandro X
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