
The bounded context is not enough!

Alberto Acerbis – Alessandro Colla

Disclaimer

The "Bounded context" is needed, but in our opinion
is not just a business transactional boundary
anymore. We must keep in consideration its
evolution and the static coupling with the
infrastructure.

github.com/BrewUp/DDD-Explore-2024
All the code you will see today

Awful monolith

Show me the code

Big ball of mud

Lack of a clear architecture, leading to a system that
is haphazardly structured and difficult to understand
or modify.

Tight Coupling / Cyclic
dependencies between
components

Components are heavily
interdependent, making changes in
one part of the system likely to break
other parts.

Lack of modularity

Failure to properly encapsulate different functionalities,
leading to a system where changes in one module
ripple through others.

Shared data model

Different modules or functionalities
directly accessing and modifying a
shared data model, leading to high
risk of data corruption and conflicts.

Monolithic database
design

A single database for all application needs, creating a
bottleneck and complicating any attempt to scale or
separate concerns.

What is the impact of changes?

Neal Ford, Mark Richards, Pramod Sadalage, and Zhamak Dehghani

Exercise
How can we evolve it?

“Developers are drawn
to complexity, like
moths to a flame, often
with the same
outcome” - Neal Ford

Architecture decisions

We must understand the principles/key concepts to make effective decisions

• Service: a cohesive collection of functionality deployed as an independent executable

• Coupling: a change in one service might require a change in an another to maintain
proper functionality

• Component: building block of the application that does some sort of business or
infrastructure function (e.g.: namespace or package)

• Synchronous communication: the caller wait for the response before proceeding

• Asynchronous communication: the caller does not wait for the response

• Orchestrated coordination: it includes a service that coordinate the workflow

• Choreographed coordination: it lacks an orchestrator

• Atomicity: A workflow is atomic if all parts maintain a consistent state at all times (the
opposite is eventual consistency)

• Contract: the interface between two software parts

Modular (good) monolith
Show me the code

What is the impact of changes?

Neal Ford, Mark Richards, Pramod Sadalage, and Zhamak Dehghani

What we are missing next?
What we can add to make modules fully indipendent?

CQRS+ES

Exercise
Let’s work together with some live coding

Modular monolith with events
Show me the code

Fitness functions

The book «Building Evolutionary Architectures» defined the concept of
an architectural fitness function

“any mechanism that performs an objective integrity assessment of
some architecture characteristics or combination of architecture
characteristics.”

Microservices
Show me the code

What is the impact of changes?

Neal Ford, Mark Richards, Pramod Sadalage, and Zhamak Dehghani

Well…How do I split my monolithic DB?

Single table
ownership

Common table
ownership

Joint
ownership Table split

Data domain
Delegate

“Software architecture it's abstract
by nature and we must ground it
with some implementation details to
make it concrete”

Architecture quantum|quanta

An architecture quantum measures several aspects of both topology
and behavior in software architecture related to how parts connect and
communicate with one another.

It is an independently deployable artifact with high functional
cohesion, high static coupling, and synchronous dynamic coupling.

Bounded context is not enough

• Transactional boundary is not enough as a concept.

• We have to keep in consideration static and dynamic coupling of our
components (e.g. DB, service bus, event store, etc.).

• We like to see it as «components cohesion» like the concept of
functional cohesion

Components Cohesion

Events DB

Components Cohesion

Aggregate

Entities
Value

objects

Service bus

Etc.

Read Model

UI / API

Last responsibility moment

«Delay decisions as long as you can, but not longer. Maximize the information you
have. Minimize technical debt from complexity.»

Postel’s law or Robustness principle
“Be conservative in what you do, be liberal in what you accept from others”
Only validate what you need

Trade-off everywhere
«Don’t try to find the best design in software architecture.
Instead, strive for the least worst combination of trade-offs»

Bibliografia

• Implementing Domain-Driven Design (V. Vernon)
https://www.amazon.it/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBN8/

• Introducing Event storming (A.Brandolini)
https://leanpub.com/introducing_eventstorming

• REST in Practice: Hypermedia and Systems Architecture (J.Webber)
https://www.amazon.it/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829

• Enterprise Integration Patterns (G. Hohpe)
https://www.amazon.it/Enterprise-Integration-Patterns-Designing-Deploying/dp/0321200683/

• Learning Domain-Driven Design: Aligning Software Architecture and
Business Strategy (Vlad Khononov)
https://www.amazon.com/Learning-Domain-Driven-Design-Aligning-Architecture/dp/1098100131

• Hands-On Domain-Driven Design with .NET Core (A. Zimarev)
https://www.amazon.it/Hands-Domain-Driven-Design-NET/dp/1788834097

• Software Architecture: The Hard Parts (N. Ford, M. Richards, P.
Sadalage, Z. Dehghani)
https://www.amazon.com/Software-Architecture-Trade-Off-Distributed-Architectures/dp/1492086894

https://www.amazon.it/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829

You can find us at

▫ @aacerbis
▫ https://www.linkedin.com/in/aacerbis/
▫ alberto.acerbis@intre.it

▫ @collaalessandro
▫ alessandrocolla
▫ alessandro.colla@evoluzione.agency

	Slide 1: The bounded context is not enough!
	Slide 2: Disclaimer
	Slide 3: github.com/BrewUp/DDD-Explore-2024
	Slide 4: Awful monolith
	Slide 5: Big ball of mud
	Slide 6: Tight Coupling / Cyclic dependencies between components
	Slide 7: Lack of modularity
	Slide 8: Shared data model
	Slide 9: Monolithic database design
	Slide 10: What is the impact of changes?
	Slide 11: Exercise
	Slide 12: “Developers are drawn to complexity, like moths to a flame, often with the same outcome” - Neal Ford
	Slide 13: Architecture decisions
	Slide 14: Modular (good) monolith
	Slide 15: What is the impact of changes?
	Slide 16: What we are missing next?
	Slide 17: CQRS+ES
	Slide 18: Exercise
	Slide 19: Modular monolith with events
	Slide 20: Fitness functions
	Slide 21: Microservices
	Slide 22: What is the impact of changes?
	Slide 23: Well…How do I split my monolithic DB?
	Slide 24: “Software architecture it's abstract by nature and we must ground it with some implementation details to make it concrete”
	Slide 25: Architecture quantum|quanta
	Slide 26: Bounded context is not enough
	Slide 27: Components Cohesion
	Slide 28: Components Cohesion
	Slide 29
	Slide 30: Bibliografia
	Slide 31
	Slide 32: You can find us at

