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Sponsor



Why we make 
software?

Your job is not to write working 
code, 

Your job is to design a working 
system.

(Mathias Verraes)





Make the Implicit 
Explicit

• Nelle conversazioni umane, il contesto 
viene compreso perché le persone lo 
stabiliscono mentre parlano. “di cosa/chi 
state parlando?”.

• Senza conoscere il contesto quando ci si 
unisce a una conversazione, questa può 
facilmente deragliare se chi arriva tardi 
assume il contesto sbagliato.

• Senza conoscere il contesto è impossibile 
creare un Modello corretto.



Ubiquitous 
Language

• L’Ubiquitous Language è 
un linguaggio modellato 
all’interno di un contesto 
limitato, in cui i termini e i 
concetti del dominio 
aziendale sono indicati e in 
cui non dovrebbero esserci 
ambiguità.



Bounded 
Context

• Context: Insieme delle 
circostanze in cui appare una 
parola o un’affermazione che 
ne determina il significato.

• Bounded Context è un confine 
semantico.

• All’interno del perimetro ogni 
componente ha un significato 
preciso.

• E risolve problemi specifici. 



Context
Mapping

• Definisce contratti di 
integrazione e direzioni di 
dipendenza.

• Evidenzia traduzioni di 
modello e Anti-Corruption-
Layer.

• Riduce coupling accidentale.

• Guida scelte architetturali 
(API, eventi, ownership dei 
modelli). 
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Tips and Tricks

• DDD non è una vitamina: non 
fa bene a prescindere!

• Le Minimal API semplificano, 
non facilitano!

• Il vero anti-pattern è usare 
DDD quando non serve.
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