
Domain-Driven Design con le
Minimal API

meno boilerplate, stesso dominio

Alberto Acerbis
Software Architect – Trainer
alberto.acerbis@intre.it

https://sessionize.com/app/speaker/session/1118692
https://sessionize.com/app/speaker/session/1118692
https://sessionize.com/app/speaker/session/1118692
https://sessionize.com/app/speaker/session/1118692
https://sessionize.com/app/speaker/session/1118692
https://sessionize.com/app/speaker/session/1118692
https://sessionize.com/app/speaker/session/1118692
https://sessionize.com/app/speaker/session/1118692

Sponsor

Why we make
software?

Your job is not to write working
code,

Your job is to design a working
system.

(Mathias Verraes)

Make the Implicit
Explicit

• Nelle conversazioni umane, il contesto
viene compreso perché le persone lo
stabiliscono mentre parlano. “di cosa/chi
state parlando?”.

• Senza conoscere il contesto quando ci si
unisce a una conversazione, questa può
facilmente deragliare se chi arriva tardi
assume il contesto sbagliato.

• Senza conoscere il contesto è impossibile
creare un Modello corretto.

Ubiquitous
Language

• L’Ubiquitous Language è
un linguaggio modellato
all’interno di un contesto
limitato, in cui i termini e i
concetti del dominio
aziendale sono indicati e in
cui non dovrebbero esserci
ambiguità.

Bounded
Context

• Context: Insieme delle
circostanze in cui appare una
parola o un’affermazione che
ne determina il significato.

• Bounded Context è un confine
semantico.

• All’interno del perimetro ogni
componente ha un significato
preciso.

• E risolve problemi specifici.

Context
Mapping

• Definisce contratti di
integrazione e direzioni di
dipendenza.

• Evidenzia traduzioni di
modello e Anti-Corruption-
Layer.

• Riduce coupling accidentale.

• Guida scelte architetturali
(API, eventi, ownership dei
modelli).

Cohesion
High Low

Distance

High
Tight

Coupling
Loose

Coupling

Low
High

Cohesion
Low

Cohesion

Low integration strength,
high distance

High integration strength,
low distance

High integration strength,
high distance

Low integration strength,
low distance

Loose coupling

High cohesion

Tight coupling

Low cohesion

Tips and Tricks

• DDD non è una vitamina: non
fa bene a prescindere!

• Le Minimal API semplificano,
non facilitano!

• Il vero anti-pattern è usare
DDD quando non serve.

Alberto Acerbis

Software Architect - Trainer

alberto.acerbis@intre.it

https://github.com/Ace68/ArchitettureEvolutive

Grazie!

mailto:alberto.acerbis@intre.it
https://github.com/Ace68/ArchitettureEvolutive

	Light Mode
	Diapositiva 1: Domain-Driven Design con le Minimal API meno boilerplate, stesso dominio
	Diapositiva 2: Sponsor
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11: Tips and Tricks
	Diapositiva 12

