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Static Analysis

“A process that allows you to analyze an application’s code for potential errors

without executing the code itself.”
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Grep —E vuln sw.c?

01 GREP 02 LEXICAL ANALYSIS (TOKENS)
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Tokens
X = 42

 T0kenInfh(type= (ENCODING), string= , start=(o, 0), end=(0, ©), line=
TokenInfo(type=1 (NAME), string='x', start=(1, ©), end=(1, 1), line= )
TokenInfo(type=54 (OP), string="=", start=(1, 2), end=(1, 2), line= )
TokenInfo(type=2 (NUMBER), string= , start=(1, 4), end=(1, 6), line=

TokenInfo(type=4 (NEWLINE), string="", start=(1, 6), end=(1, 7), line=
TokenInfo(type=0 (ENDMARKER), string="", start=(2, @), end=(2, 0), line="")

)
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Abstract Syntax Trees

import math
greet(who):
it who:
print(f"Hello, {who}!")
else:
print("Hello, World!")
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def profile (request):

Control Flow Graphs \/L/

HTTP parameter
usernamea =

rﬁquast GET .get ("usernams")

from django.db import connection
profile(request):
with connection.cursor() as cursor:

username = request.GET.get("username")

— fug . ; BOM nicare W r Arname= n Stnnq concatenation of the parameter \,
sql = SELECT * FROM users WHERE username={username} o i O STataTte
7 cursor.execute {sql} ggl = f"SELECT * from Users WHER

username={UsSarnama ;"

Execution of the SQL statement
cursor.execute (8gl)
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Exercise 1: Syntactic Analysis of C/C++ code

Spotting the vulnerability

Writing a weggli query

Creating a CodeQLl database

Setting up CodeQL and query pack in VSCode
Finding all interesting memcpy calls
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DataFlow and TaintTracking

« CFGs describe the flow of control, by giving ASTs an ordering relation
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DataFlow and TaintTracking

» CFGs describe the flow of control, by giving ASTs an ordering relation
- CFGs allow specifying untrusted inputs (sources) and dangerous targets (sinks),
and finding the connection between them
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» CFGs describe the flow of control, by giving ASTs an ordering relation
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 TaintTracking marks certain inputs as tainted and follows their propagation

@ Betrusted



Finding security bugs in your code with semantic analysis

DataFlow and TaintTracking

» CFGs describe the flow of control, by giving ASTs an ordering relation

« CFGs allow specifying untrusted inputs (sources) and dangerous targets (sinks),
and finding the connection between them

« DataFlow analysis only tracks value-preserving data

 TaintTracking marks certain inputs as tainted and follows their propagation

« We can also specify additional sanitizers (taint steps) to customize our scanning
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Exercise 2: Semantic Analysis of Grafana
(CVE-2021-43798)

« Testing out the exploit

« Semgrep rule with vulnerable pattern
« CodeQLl query with Local Tracking

« CodeQLl query with Global Tracking
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Exercise 3: Semantic Analysis of Linux (C)

« Finding CVE-2023-0179 with Range Analysis
« Looking for Memory Corruption vulnerabilities with Guard Conditions
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Implementing CodeqQL in your CI/CD

« Fork a repository to scan:

« Enable code scanning from the Security tab
« Specify queries to run and trigger events

« Check status in the Security tab

* Investigate single alerts

« Find out more queries:
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https://github.com/GitHubSecurityLab/codeql-zero-to-hero
https://github.com/github/codeql/tree/main/cpp/ql/src
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THANK YOU!

Q&A
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