@ Betrusted

Finding security bugs in your
code with semantic analysis

betrusted.it

Davide Ornaghi

Offensive Security Specialist —
Co-founder @ Betrusted

« Penetration Tester
 Linux Vulnerability Researcher
« Speaker at NoHat and HITB

@) Betrusted

Finding security bugs in your code with semantic analysis

Static Analysis

“A process that allows you to analyze an application’s code for potential errors

without executing the code itself.”

(-5 Betrusted

Finding security bugs in your code with semantic analysis

Grep —E vuln sw.c?

01 GREP

@) Betrusted

Finding security bugs in your code with semantic analysis

Grep —E vuln sw.c?

01 GREP 02 LEXICAL ANALYSIS (TOKENS)

@) Betrusted

Finding security bugs in your code with semantic analysis

Grep —E vuln sw.c?

01 GREP 02 LEXICAL ANALYSIS (TOKENS)

03 SYNTACTIC ANALYSIS (AST)

@) Betrusted

Finding security bugs in your code with semantic analysis

Grep —E vuln sw.c?

01 GREP 02 LEXICAL ANALYSIS (TOKENS)

03 SYNTACTIC ANALYSIS (AST) 04 SEMANTIC ANALYSIS (CFG)

@) Betrusted

Finding security bugs in your code with semantic analysis

Tokens
X = 42

 T0kenInfh(type= (ENCODING), string= , start=(o, 0), end=(0, ©), line=
TokenInfo(type=1 (NAME), string='x', start=(1, ©), end=(1, 1), line=)
TokenInfo(type=54 (OP), string="=", start=(1, 2), end=(1, 2), line=)
TokenInfo(type=2 (NUMBER), string= , start=(1, 4), end=(1, 6), line=

TokenInfo(type=4 (NEWLINE), string="", start=(1, 6), end=(1, 7), line=
TokenInfo(type=0 (ENDMARKER), string="", start=(2, @), end=(2, 0), line="")

)

@) Betrusted

Finding security bugs in your code with semantic analysis

Abstract Syntax Trees

import math
greet(who):
it who:
print(f"Hello, {who}!")
else:
print("Hello, World!")

Y Betrusted

Finding security bugs in your code with semantic analysis

def profile (request):

Control Flow Graphs \/L/

HTTP parameter
usernamea =

rﬁquast GET .get ("usernams")

from django.db import connection
profile(request):
with connection.cursor() as cursor:

username = request.GET.get("username")

— fug . ; BOM nicare W r Arname= n Stnnq concatenation of the parameter \,
sql = SELECT * FROM users WHERE username={username} o i O STataTte
7 cursor.execute {sql} ggl = f"SELECT * from Users WHER

username={UsSarnama ;"

Execution of the SQL statement
cursor.execute (8gl)

" Betrusted

Finding security bugs in your code with semantic analysis

Exercise 1: Syntactic Analysis of C/C++ code

Spotting the vulnerability

Writing a weggli query

Creating a CodeQLl database

Setting up CodeQL and query pack in VSCode
Finding all interesting memcpy calls

@ Betrusted

Finding security bugs in your code with semantic analysis

DataFlow and TaintTracking

« CFGs describe the flow of control, by giving ASTs an ordering relation

@) Betrusted

Finding security bugs in your code with semantic analysis

DataFlow and TaintTracking

» CFGs describe the flow of control, by giving ASTs an ordering relation
- CFGs allow specifying untrusted inputs (sources) and dangerous targets (sinks),
and finding the connection between them

@ Betrusted

Finding security bugs in your code with semantic analysis

DataFlow and TaintTracking

» CFGs describe the flow of control, by giving ASTs an ordering relation

« CFGs allow specifying untrusted inputs (sources) and dangerous targets (sinks),
and finding the connection between them

« DataFlow analysis only tracks value-preserving data

&) Betrusted

Finding security bugs in your code with semantic analysis

DataFlow and TaintTracking

» CFGs describe the flow of control, by giving ASTs an ordering relation

« CFGs allow specifying untrusted inputs (sources) and dangerous targets (sinks),
and finding the connection between them

« DataFlow analysis only tracks value-preserving data
 TaintTracking marks certain inputs as tainted and follows their propagation

@ Betrusted

Finding security bugs in your code with semantic analysis

DataFlow and TaintTracking

» CFGs describe the flow of control, by giving ASTs an ordering relation

« CFGs allow specifying untrusted inputs (sources) and dangerous targets (sinks),
and finding the connection between them

« DataFlow analysis only tracks value-preserving data

 TaintTracking marks certain inputs as tainted and follows their propagation

« We can also specify additional sanitizers (taint steps) to customize our scanning

&1 Betrusted

Finding security bugs in your code with semantic analysis

Exercise 2: Semantic Analysis of Grafana
(CVE-2021-43798)

« Testing out the exploit

« Semgrep rule with vulnerable pattern
« CodeQLl query with Local Tracking

« CodeQLl query with Global Tracking

@ Betrusted

Finding security bugs in your code with semantic analysis

Exercise 3: Semantic Analysis of Linux (C)

« Finding CVE-2023-0179 with Range Analysis
« Looking for Memory Corruption vulnerabilities with Guard Conditions

@ Betrusted

Finding security bugs in your code with semantic analysis

Implementing CodeqQL in your CI/CD

« Fork a repository to scan:

« Enable code scanning from the Security tab
« Specify queries to run and trigger events

« Check status in the Security tab

* Investigate single alerts

« Find out more queries:

@ Betrusted

https://github.com/GitHubSecurityLab/codeql-zero-to-hero
https://github.com/github/codeql/tree/main/cpp/ql/src

Finding security bugs in your code with semantic analysis

THANK YOU!

Q&A

CoS Betrusted

@ Betrusted

	Slide 1: Finding security bugs in your code with semantic analysis
	Slide 2: Offensive Security Specialist – Co-founder @ Betrusted
	Slide 3: Static Analysis
	Slide 4: Grep –E vuln sw.c?
	Slide 5: Grep –E vuln sw.c?
	Slide 6: Grep –E vuln sw.c?
	Slide 7: Grep –E vuln sw.c?
	Slide 8: Tokens
	Slide 9: Abstract Syntax Trees
	Slide 10: Control Flow Graphs
	Slide 11
	Slide 12: DataFlow and TaintTracking
	Slide 13: DataFlow and TaintTracking
	Slide 14: DataFlow and TaintTracking
	Slide 15: DataFlow and TaintTracking
	Slide 16: DataFlow and TaintTracking
	Slide 17
	Slide 18
	Slide 19: Implementing CodeQL in your CI/CD
	Slide 20: THANK YOU! Q & A
	Slide 21

